Senin, 24 November 2014

PENGUJIAN HIPOTESIS ASOSIATIF

Hipotesis Asosiatif

                 Merupakan dugaan tentang adanya hubungan antar variabel dalam populasi, yang akan diuji melalui hubungan antar variabel dalam sampel. Langkah pertama pembuktian : perlu dihitung terlebih dahulu koefisiensi korelasi yang ada pada sampel untuk diberlakukan pada seluruh populasi. Bila penelitian dilakukan untuk seluruh populasi, maka tidak diperlukan pengujian signifikansi terhadap koefisien korelasi yang ditemukan, yang berarti peneliti tidak perlu merumuskan dan menguji instrumen statistik

Terdapat 3 hubungan Asosiatif :

  1. Simetris
  2. Sebab akibat (kausal)
  3. Interaktif (saling mempengaruhi)
Korelasi : angka yang menunjukkan arah dan kuatnya hubungan antar variabel.
Arah       :  dinyatakan dalam bentuk hubungan positif (+) atau negatif (-)
Kuat        :  dalam besaran koefisien korelasi

Hubungan variabel dinyatakan positif bila kenaikan nilai variabel yang satu mengakibatkan kenaikan nilai variabel yang lain, dan sebaliknya bila nilai penurunan nilai variabel yang satu mengakibatkan penurunan nilai variabel yang lain

Contoh (+) : semakin tinggi orang semakin berat badannya

Hubungan variabel dinyatakan negatif bila kenaikan nilai variabel yang satu justru mengakibatkan penurunan nilai variabel yang lain dan sebaliknya penurunan nilai variabel yang satu justru mengakibatkan kenaikan nilai variabel yang lain

Contoh (+) : hubungan antara tinggi curah hujan dengan es yang terjual

Kisaran Koefisien Korelasi (r)    :  -1 s/d 1
Hubungan sempurna                 :  r = 1 atau -1

Artinya : kejadian variabel yang satu dapat dijelaskan secara sempurna oleh variabel yang lain, tanpa melakukan kesalahan sedikitpun
Semakin kecil r, semakin besar error (kesalahan) untuk membuat prediksi
Besarnya koefisien korelasi dapat diketahui dengan penyebaran pertemuan titik-titk antar variabel x dan y :
  1. Jika titik-titiknya berbentuk lingkaran                     :  r = 0
  2. Jika titik-titiknya berbentuk elips (oval)      :  r = 0,5
  3. Jika titik-tiknya berbentuk garis lurus                     :  r = 1
8.1        Pedoman Memilih Teknik Korelasi

  MACAM/TINGKATAN DATA
  TEKNIK KORELASI
  Nominal
  Koefisien Kontingency
Ordinal
  1. Spearman Rank
  2. Kendal Tau
Interval dan Ratio
  1. Pearson Product Moment
  2. Korelasi Ganda
  3. Korelasi Parsial

8.1.1        Statistik Parametris
  1. Korelasi Product Moment
Digunakan untuk mencari hubungan dan membuktikan hipotesis hubungan dua variabel, bila data kedua variabel berbentruk interval atau ratio, dan sumber data dari kedua variabel tersebut adalah sama
r xy     =      Σ xy
√ Σ x2 y2              
            dimana :



x = (xi – x) dan
                                    
y = (yi – y)

r xy =                n Σ xi yi – (Σ xi ) (Σ yi)
√ ( n Σ xi2 – (xi)2)( n Σ yi2 – (yi)2)

Rumus di atas digunakan bilamana kita sekaligus akan mencari persamaan regresinya

Contoh soal

Dilakukan penelitian untuk mengetahui ada tidaknya hubungan antara pendapatan dan pengeluaran.  Untuk keperluan tersebut telah dilakukan pengumpulan data terhadap 10 responden yang diambil secara random.  Berdasarkan 10 responden tersebut diperoleh data tentang pendapatan (x) dan pengeluaran (y) per bulan dalam ribuan sebagai berikut :

x       =          800    900     700      600    700     800     900      600     500      500
y       =          300    300     200      200    200     200     300      100     100      100

Ho     :  Tidak ada hubungan antara pendapatan dan pengeluaran
Ha     :  Terdapat hubungan antara pendapatan dan pengeluaran

atau :
Ho     :  ρ = 0
Ha     :  ρ ≠ 0

Tabel Penolong untuk menghitung korelasi antara pendapatan dan pengeluaran

  No
Pendapatan per bulan
( Y )
Pengeluaran per bulan
( Y )
_ ( X – X)
x
         _ ( Y – Y)
y
  X 2
  Y 2
  XY
1 2
3
4
5
6
7
8
9
10
8 9
7
6
7
8
9
6
5
5
3 3
2
2
2
2
3
1
1
1
1 2
0
-1
0
1
2
-1
- 2
2
1 1
0
0
0
0
1
- 1
-1
- 1
1 4
0
1
0
1
4
1
4
4
1 1
0
0
0
0
1
1
1
1
1 2
0
0
0
0
2
1
2
2
  Σ = 70 _
X = 7
Σ = 20 _
Y = 2
0 0 20 6 10

r xy =       Σ xy =          10        =  0,9129
√ Σ x2 y2                               √(20)(6)


Kesimpulan :

Terdapat korelasi positif sebesar 0,9129 antara pendapatan dan pengeluaran setiap bulannya, dimana semakin besar pendapatan, semakin besar pula pengeluaran

Pertanyaan :

Apakah r tersebut signifikan (dapat digeneralisir) atau tidak ?
Perlu dibandingkan dengan t tabel, dengan tarap kesalahan tertentu (Tabel III)
Untuk N= 10 dan tarap kesalahan 5 %, r tabel = 0,632

Ternyata r hitung ( 0,9129) > r tabel ( 0,632), sehingga tolak Ho atau terima Ha
Kesimpulan :  Hubungan positif antara pendapatan dengan pengeluaran dengan nilai korelasi sebesar 0,9129 dapat digeneralisasikan

Koefisien Determinasi
Koefisien Determinasi : Kuadrat dari Koefisien Korelasi (r 2) :
Koefisien Penentu, dimana varians yang terjadi pada variabel dependen dipengaruhi sebesar r 2 oleh variabel  independen.
Contoh  : r = 0,9129
Koefisien determinasinya adalah :
r 2 = (0,9129) 2
=  0,83

Artinya :
Besarnya pengeluaran, 83 % dipengaruhi oleh pendapatan, sedangkan sisanya sebesar 17 % dipengaruhi oleh variabel/faktor lain, sehingga pengeluaran tersebut tidak dapat diduga 100 %

Pedoman  Untuk Memberikan Interpretasi Terhadap Koefisien Korelasi

  INTERVAL KOEFISIEN
  TINGKAT HUBUNGAN
  0,00 – 0,199
0,20 – 0,399
0,40 – 0,599
0,60 – 0,799
0,80 – 1,000
  Sangat Rendah
Rendah
Sedang
Kuat
Sangat Kuat

Tidak ada komentar:

Posting Komentar